مقاله رایگان با موضوع مکانیزم های بلاک چین
عنوان مقاله:
مکانیزم های بلاک چین برای امنیت IoT
Blockchain mechanisms for IoT security
سال انتشار: 2018
رشته: مهندسی کامپیوتر - فناوری اطلاعات
گرایش: اینترنت و شبکه های گسترده - رایانش ابری - امنیت اطلاعات
دانلود رایگان این مقاله:
دانلود مقاله مکانیزم های بلاک چین
مشاهده سایر مقالات جدید:
3. Blockchain concepts
The concept of blockchains is now receiving considerable research and practical interest. Blockchains provide data integrity across a large number of transactional parties by providing all participants in the ecosystem with a working proof of decentralized trust; classically, this assurance of integrity had to be achieved by utilizing a trusted third party to ‘escrow’ elements of the transaction – a blockchain replaces this trusted third party. A blockchain is a cryptographically-linked list of blocks created by nodes, where each block has a header, the relevant transaction data to be protected, and ancillary security metadata (e.g., creator identity, signature, last block number, and so on.). It facilitates “decentralized consensus” by being a distributed ledger (which is effectively a distributed database), that retains a(n expanding) list of records, while simultaneously precluding revision or tampering of such records retrospectively. Because blockchains are intrinsically resistant to modification of the underlying data, they are perceived as embodying a tamper-resistant incorruptible decentralized digital ledger for economic or logical transactions related to virtually anything of value [43–48]. The blockchain intrinsically provides universal accessibility, incorruptibility, openness and the ability to store and transfer data in a secure manner. Many applications of blockchains have emerged in the recent past beyond the original applications of cryptocurrency, such as bitcoins. The data can, in fact, represent a wide variety of elements, documents, facts, packets, transactions, agreements, contracts, monetary transactions, or signatures. A blockchain can support a wide range of tasks, including allowing parties to draw up trustworthy contracts, storing sensitive information, and transferring money safely—all without the intervention of an intermediary. Possible business applications include claims filing/processing; claim fraud detection, for example to spot multiple claims from a claimant (e.g., medical office) for the same procedure; data decentralization; and cybersecurity management (e.g., data integrity). Another application example is the introduction of new, smart logistics-oriented contracts where invoices pay themselves when a shipment is accepted by the recipient. Additionally, there often are requirements to verify the authenticity of items and systems through multi-stage multi-national supply, distribution and service chains (that might raise concerns about counterfeit items and/or the requirement of tracking legally controlled items such as medicines, medical devices, controlled pharmaceutical substances, arms, negotiable bonds and so on.) An important, proposed application of blockchains is for cybersecurity, specifically for Integrity.It is not the goal of this paper to provide a formal definition of a blockchain (or a bitcoin); the mathematics of a formal definition are somewhat complex (e.g., see [49–59]); rather, the goals are to provide a brief overview of the blockchain technology, to identify some possible use cases in the IoT environment in general and ITSs in particular, and to advocate further research and development in this arena.
4. IoT blockchain approaches
Fundamentally the IoT can utilize blockchains to ensure integrity of the business logic data. Table 2 depicts the possible use of blockchains at various layers of the reference architecture framework (an example for e-health applications is also included in the table). It should be noted that the mechanisms discussed above (P2P network participation, support of appropriate P2P protocols, endorsing peer functionality, committing peer functionality, support of the consensus algorithms, PoW and other related mechanism) give rise to certain overall complexity, especially if the P2P infrastructure is established globally, across an entire IoT ecosystem. Because of the typical limitations of IoT nodes, as discussed in Section 2, it may not always be practical to utilize a full-fledged blockchain-secured network in the generic IoT context; however, certain critical or institutional applications such as smart grids, ITSs, e-health, insurance, and smart contract environments may have sufficient capabilities to support the requisite P2P functionality. Another approach is to establish P2P networks having locally limited scope instead of global scope; this implies that the supporting messages – discovery, transaction querying, invoking, synchronization and consensus – require less aggregate bandwidth and far-end assurance of reliable delivery across large networks; also, the number of transactions and/or blocks to be processed and stored may be smaller. The potential limitations of implementing such roles in generic IoT nodes to create distributed ledgers due to limited computing and storage capacity of IoT devices is perhaps evident and the blockchain capabilities may thus have to be implemented in selected Network Elements (NEs) in the network, as discussed below. One would not expect that a low-end pendent IoT node, such as remote sensor or actuator would vouch for integrity of the entire ecosystem data; thus, only some select NEs may be expected to take on that more onerous role. Another approach would be to use a simple distributed ledger where blocks are digitally signed along the way, but the more elaborate consensus process is not implemented: based on the list of functional requirements listed above for miners.
چکیده
استفاده از اینترنت اشیا (IoT) باعث شکل گیری یک سطح بزرگ حمله می شود که نیازمند روش های تقویت ایمنی نقطه به نقطه می باشد. کاربرد های IoT شامل کاربرد های مختلف می باشد، از شرایط خطرناک در ماموریت های مهم گرفته ( مثلا شبکه های هوشمند، سیستم حمل و نقل هوشمند، نظارت ویدئویی، سلامت الکترونیک) تا کاربرد های تجاری ( مانند بانکداری، موضوعات لجستیک، بیمه و قرارداد های قانونی). به همین دلیل این نیاز وجود دارد که یک پشتیبانی جامع برای امنیت در IoT ها وجود داشته باشد به خصوص برای کاربرد های ماموریت های بحرانی، و البته که موضوع کاربرد های تجاری نیز به نوبه خودش اهمیت زیادی دارد. تعدادی از تکنیک های امنیتی و رویکرد های مربوطه در این زمینه پیشنهاد شده و یا مورد استفاده قرار گرفته است. مکانیزم های بلاک چین (BCM ها) نقش مهمی را در ایمن سازی کاربرد های مبتنی بر IoT ها ایفا می کند زیرا بخشی از یک بافت امنیتی می شود که در زمینه رویکرد های دفاع عمقی/ قلعه های دفاعی (Castle) شکل می گیرد. یک بلاک چین دیتابیسی است که تمام تراکنش های صورت گرفته – یا همان داده ها را – به ترتیب تاریخ در مجموعه ای از حافظه های کامپیوتر که ضد نفوذ نسبت به حمله و سو استفاده هستند، ذخیره سازی می کند. این تراکنش ها را می توان به صورت مشترک در اختیار کاربران قرار دارد. اطلاعات در این دیتابیس ذخیره سازی می شود و یا این که در یک حافظه کلی عمومی ( سیستم های Ledger) ذخیره سازی می شود که قابلیت اصلاح بر روی این اطلاعات وجود ندارد؛ در نتیجه هر کاربر یا گره در سیستم می تواند مشابه با تمام کاربران یا گره های موجود در لجر استفاده کند. این مقاله بعضی از محیط های IoT را بررسی می کند که BCM ها در آن نقش مهمی را ایفا می کند و همچنین، به این موضوع اشاره می کند که BCM ها تنها بخشی از راهکارهای امنیتی برای IoT (IoTsec) هستند.